Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.448
Filtrar
1.
Neurosurg Rev ; 47(1): 136, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38561568

RESUMO

This letter offers a nuanced evaluation of the recent study on single-cell transcriptome analysis of ECM-remodeling meningioma cells. While acknowledging the positive aspects, such as enhanced understanding of tumor heterogeneity and identification of potential therapeutic targets, it also highlights potential limitations, including challenges in data interpretation and validation.The focus on ECM-remodeling may inadvertently overshadow other critical aspects of tumor biology, necessitating a more holistic approach. The abstract concludes by emphasizing the importance of considering the broader context of tumor heterogeneity and microenvironmental influences in future research endeavors to improve clinical outcomes for patients with meningioma and other malignancies.


Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/genética , Meningioma/patologia , Análise da Expressão Gênica de Célula Única , Matriz Extracelular/patologia , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patologia
2.
Ups J Med Sci ; 1292024.
Artigo em Inglês | MEDLINE | ID: mdl-38571886

RESUMO

Meningiomas, the most common primary brain tumors in adults, are often benign and curable by surgical resection. However, a subset is of higher grade, shows aggressive growth behavior as well as brain invasion, and often recurs even after several rounds of surgery. Increasing evidence suggests that tumor classification and grading primarily based on histopathology do not always accurately predict tumor aggressiveness and recurrence behavior. The underlying biology of aggressive treatment-resistant meningiomas and the impact of specific genetic aberrations present in these high-grade tumors is still only insufficiently understood. Therefore, an in-depth research into the biology of this tumor type is warranted. More recent studies based on large-scale molecular data such as whole exome/genome sequencing, DNA methylation sequencing, and RNA sequencing have provided new insights into the biology of meningiomas and have revealed new risk factors and prognostic subtypes. The most common genetic aberration in meningiomas is functional loss of NF2 and occurs in both low- and high-grade meningiomas, whereas NF2-wildtype meningiomas are enriched for recurrent mutations in TRAF7, KLF4, AKT1, PI3KCA, and SMO and are more frequently benign. Most meningioma mouse models are based on patient-derived xenografts and only recently have new genetically engineered mouse models of meningioma been developed that will aid in the systematic evaluation of specific mutations found in meningioma and their impact on tumor behavior. In this article, we review recent advances in the understanding of meningioma biology and classification and highlight the most common genetic mutations, as well as discuss new genetically engineered mouse models of meningioma.


Assuntos
Neoplasias Meníngeas , Meningioma , Adulto , Humanos , Animais , Camundongos , Meningioma/genética , Meningioma/patologia , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patologia , Neoplasias Meníngeas/cirurgia , Fator 4 Semelhante a Kruppel , Mutação , Prognóstico
4.
Neurosurg Rev ; 47(1): 118, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38491247

RESUMO

Meningiomas are the most common tumours that primarily arise in the central nervous system, but their intratumoural heterogeneity has not yet been thoroughly studied. We aimed to investigate the transcriptome characteristics and biological properties of ECM-remodeling meningioma cells. Single-cell RNA sequencing (ScRNA-seq) data from meningioma samples were acquired and used for analyses. We conducted comprehensive bioinformatics analyses, including screening for differentially expressed genes (DEGs), Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway and Gene Ontology (GO) term enrichment analyses, Gene Set Enrichment Analysis (GSEA), protein-protein interaction (PPI) analysis, and copy number variation (CNV) analysis on single-cell sequencing data from meningiomas. Eighteen cell types, including six meningioma subtypes, were identified in the data. ECM-remodeling meningioma cells (MGCs) were mainly distributed in brain-tumour interface tissues. KEGG and GO enrichment analyses revealed that 908 DEGs were mainly related to cell adhesion, extracellular matrix organization, and ECM-receptor interaction. GSEA analysis demonstrated that homophilic cell adhesion via plasma membrane adhesion molecules was significantly enriched (NES = 2.375, P < 0.001). CNV analysis suggested that ECM-remodeling MGCs showed considerably lower average CNV scores. ECM-remodeling MGCs predominantly localized at the brain-tumour interface area and adhere stably to the basement membrane with a lower degree of malignancy. This study provides novel insights into the malignancy of meningiomas.


Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Perfilação da Expressão Gênica , Meningioma/genética , Análise da Expressão Gênica de Célula Única , Variações do Número de Cópias de DNA , Neoplasias Meníngeas/genética
5.
BMC Cancer ; 24(1): 345, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500077

RESUMO

BACKGROUND: Meningioma, the most prevalent intracranial tumor, possesses a significant propensity for malignant transformation. Circular RNAs (circ-RNAs), a class of non-coding RNAs, have emerged as crucial players in tumorigenesis. This study explores the functional relevance of hsa_circ_0004872, a specific circ-RNA, in the context of meningioma. METHODS: Molecular structure and stability of hsa_circ_0004872 were elucidated through PCR identification. Meningioma cell proliferation and apoptosis were assessed using the CCK-8 assay and flow cytometry, respectively. Gene and protein expression were analyzed via qRT-PCR and western blot. Molecular interactions were confirmed through dual-luciferase reporter gene and RIP assays. RESULTS: Hsa_circ_0004872, derived from exons 2 to 4 of the host gene MAPK1, demonstrated enhanced stability compared to its host MAPK1. Clinical data described that hsa_circ_0004872 was reduced in meningioma tissues and cell lines, and negatively correlated to poor survival rate of meningioma patients. Overexpression of hsa_circ_0004872 exhibited inhibitory effects on cell proliferation and promotion of apoptosis in vitro. Subsequent investigations unveiled a direct interaction between hsa_circ_0004872 and miR-190a-3p, leading to the activation of the PI3K/AKT signaling pathway through targeting PTEN. Notably, miR-190a-3p silence accelerated the apoptosis and proliferation inhibition of meningioma cells by inactivating PTEN/PI3K/AKT signaling, while miR-190a-3p overexpression showed an opposite effect, which greatly reversed the anti-tumor effects of hsa_circ_0004872 overexpression. CONCLUSION: In summary, our findings highlighted the intricate role of hsa_circ_0004872 in meningioma, shedding light on the regulatory mechanisms involving circ-RNAs in tumor progression. This positions hsa_circ_0004872 as a potential key regulatory factor in meningioma with implications for future therapeutic interventions.


Assuntos
Neoplasias Meníngeas , Meningioma , MicroRNAs , Humanos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Transformação Celular Neoplásica , Regulação Neoplásica da Expressão Gênica , Neoplasias Meníngeas/genética , Meningioma/genética , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , PTEN Fosfo-Hidrolase/genética , Transdução de Sinais/genética
6.
Cytokine ; 176: 156535, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38325141

RESUMO

Increasing evidence suggests the oncogenic role of missense mutation (AKT1-E17K) of AKT1 gene in meningiomas. Upon investigating the connection between the pro-tumorigenic role of AKT1-E17K and cellular metabolic adaptations, elevated levels of glycolytic enzyme hexokinase 2 (HK2) was observed in meningioma patients with AKT1-E17K compared to patients harboring wild-type AKT1. In vitro experiments also suggested higher HK2 levels and its activity in AKT1-E17K cells. Treatment with the conventional drug of choice AZD5363 (a pan AKT inhibitor) enhanced cell death and diminished HK2 levels in AKT1 mutants. Given the role of AKT phosphorylation in eliciting inflammatory responses, we observed increased levels of inflammatory mediators (IL-1ß, IL6, IL8, and TLR4) in AKT1-E17K cells compared to AKT1-WT cells. Treatment with AKT or HK2 inhibitors dampened the heightened levels of inflammatory markers in AKT1-E17K cells. As AKT and HK2 regulates redox homeostasis, diminished ROS generation concomitant with increased levels of NF-E2- related factor 2 (Nrf2) and superoxide dismutase 1 (SOD1) were observed in AKT1-E17K cells. Increased sensitivity of AKT1-E17K cells to AZD5363 in the presence of HK2 inhibitor Lonidamine was reversed upon treatment with ROS inhibitor NAC. By affecting metabolism, inflammation, and redox homeostasis AKT1-E17K confers a survival advantage in meningioma cells. Our findings suggest that targeting AKT-HK2 cross-talk to induce ROS-dependent cell death could be exploited as novel therapeutic approach in meningiomas.


Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Mutação com Ganho de Função , Hexoquinase/genética , Hexoquinase/metabolismo , Neoplasias Meníngeas/genética , Meningioma/genética , Estresse Oxidativo/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio
9.
Neurol Med Chir (Tokyo) ; 64(3): 116-122, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38267057

RESUMO

Meningioma is the second most frequent tumor in patients with neurofibromatosis type 2 (NF2). The presence of meningioma is believed to be a negative prognostic marker in these patients. However, the molecular mechanisms involved in the tumorigenesis of NF2-associated meningioma are not well characterized. Epigenetic regulation, including microRNAs (miRNAs), may be involved in the development of different tumor types in patients with NF2. The objective of this study is to explore the different characteristics of serum miRNA expression depending on the presence or absence of meningioma in patients with NF2. Nine patients with NF2 who were treated at the Department of Neurosurgery, Hiroshima University Hospital, were included. Total RNA (including small RNAs) was extracted from serum samples for the preparation of a small RNA library for next-generation sequencing analysis. Differentially expressed miRNAs (DEMs) were analyzed using the DESeq2 package to compare the characteristic miRNA expression profiles of patients with and without meningioma. In small RNA sequencing analysis, out of a total of 1,879 miRNAs registered in the database, the expressions of 657 miRNAs were observed. In DEM analysis, the expressions of four miRNAs, namely, hsa-miR-664b, hsa-miR-7706, hsa-miR-590, and hsa-miR-6513, were downregulated in patients with NF2 with meningioma compared with patients with NF2 without meningioma. Hsa-miR-193a was identified as the only upregulated miRNA in patients with NF2 with meningioma. In conclusion, we identified different circulating miRNA expression characteristics depending on the presence or absence of meningioma in patients with NF2.


Assuntos
Neoplasias Meníngeas , Meningioma , MicroRNAs , Neurofibromatose 2 , Humanos , Meningioma/genética , Neurofibromatose 2/complicações , Neurofibromatose 2/genética , Epigênese Genética , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Meníngeas/genética
10.
Orphanet J Rare Dis ; 19(1): 30, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38287340

RESUMO

BACKGROUND: The co-existence of meningioma and craniofacial fibrous dysplasia (CFD) is rare. Due to the similar radiological characteristics, it is challenging to differentiate such co-existence from solitary hyperostotic meningioma resulting in a dilemma of prompt diagnosis and appropriate intervention. METHOD: We conducted a retrospective review of the data from 21 patients with concomitant meningioma and CFD who were treated at Beijing Tiantan Hospital from 2003 to 2021. We summarized their clinicopathological features and performed a comprehensive literature review. Additionally, we tested the characteristic pathogenic variants in exon 8 and 9 of GNAS gene and the expression of corresponding α-subunit of the stimulatory G protein (Gαs) related to CFD to explore the potential interactions between these two diseases. RESULTS: The cohort comprised 4 men and 17 women (mean age, 45.14 years). CFD most commonly involved the sphenoid bone (n = 10) and meningiomas were predominantly located at the skull base (n = 12). Surgical treatment was performed in 4 CFD lesions and 14 meningiomas. Simpson grade I-II resection was achieved in 12 out of the 14 resected meningiomas and almost all of them were classified as WHO I grade (n = 13). The mean follow-up duration was 56.89 months and recurrence was noticed in 2 cases. Genetic study was conducted in 7 tumor specimens and immunohistochemistry was accomplished in 8 samples showing that though GNAS variant was not detected, Gαs protein were positively expressed in different degrees. CONCLUSIONS: We presented an uncommon case series of co-diagnosed meningioma and CFD and provided a detailed description of its clinicopathological features, treatment strategy and prognosis. Although a definite causative relationship had not been established, possible genetic or environmental interplay between these two diseases could not be excluded. It was challenging to initiate prompt diagnosis and appropriate treatment for concomitant meningioma and CFD because of its similar radiological manifestations to meningioma with reactive hyperostosis. Personalized and multi-disciplinary management strategies should be adopted for the co-existence of meningioma and CFD.


Assuntos
Displasia Fibrosa Craniofacial , Neoplasias Meníngeas , Meningioma , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patologia , Neoplasias Meníngeas/cirurgia , Meningioma/genética , Meningioma/diagnóstico , Meningioma/patologia , Prognóstico , Estudos Retrospectivos , Adulto
11.
Am J Surg Pathol ; 48(1): 46-53, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37947008

RESUMO

The 2021 World Health Organization classification of tumors of the central nervous system emphasizes the significance of molecular parameters for an integrated diagnosis. Homozygous deletion of cyclin-dependent kinase inhibitor 2a (CDKN2A) has been associated with an adverse prognosis in IDH -mutant gliomas, supratentorial ependymomas, meningiomas, and MPNST. In this study, we examined the value of p16 protein immunohistochemistry as a rapid and cost-effective screening tool for a homozygous CDKN2A deletion. Genetic analyses for CDKN2A in 30 pleomorphic xanthoastrocytomas, 32 IDH -wild-type high-grade gliomas, 40 supratentorial ependymomas with ZFTA-RELA gene fusion, 21 IDH-mutant astrocytomas, and 24 meningiomas were performed mainly by a molecular inversion probe assay, a high-resolution, quantitative technology for the assessment of chromosomal copy number alterations. Immunohistochemistry for p16 proved to have a high positive predictive value (range 90% to 100%) and an overall low negative predictive value (range 22% to 93%) for a homozygous CDKN2A deletion. In a setting where molecular testing is limited for cost and time reasons, p16 immunohistochemistry serves as a useful and rapid screening tool for identifying cases that should be subjected to further molecular testing for CDKN2A deletions.


Assuntos
Ependimoma , Glioma , Neoplasias Meníngeas , Meningioma , Humanos , Imuno-Histoquímica , Meningioma/genética , Homozigoto , Deleção de Sequência , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Glioma/genética , Neoplasias Meníngeas/genética , Ependimoma/genética , Deleção de Genes
13.
Histol Histopathol ; 39(3): 293-302, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37921468

RESUMO

Grading assessed according to World Health Organization (WHO) criteria is a major prognostic factor for determining the risk of recurrence in patients with meningiomas and establishing the most appropriate therapeutic strategy after surgery. However, the main issue is to predict the recurrence risk of WHO grade 2 meningioma and, more specifically, of the atypical subtype. Indeed, owing to a reported recurrence rate of 50%, either radiotherapy or observation is currently considered an option after gross total surgical resection of atypical meningiomas. These heterogeneous clinical outcomes are likely related to the broad histopathological diagnostic criteria for this subtype, and whether meningiomas only present as brain invasion should be classified as atypical remains controversial. Over the last few years, several studies have shown that DNA methylation profiling, next-generation sequencing, and transcriptomics can better stratify meningiomas for their recurrence risk than histology. The main limitations to the widespread use of these approaches to classify meningiomas are their high cost and the need for sophisticated technologies. However, all studies concurred that atypical meningiomas without chromosome 1p deletion display a low recurrence risk, suggesting that the assessment of this cytogenetic alteration could represent an easy and quick method to determine which patients could benefit from adjuvant treatment after surgery. In addition, prognostically unfavorable molecular groups can be distinguished using specific immunostainings, although further validation is required.


Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/genética , Prognóstico , Radioterapia Adjuvante , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/diagnóstico , Recidiva Local de Neoplasia/cirurgia , Estudos Retrospectivos , Neoplasias Meníngeas/genética , Epigênese Genética
15.
Acta Neuropathol Commun ; 11(1): 194, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066633

RESUMO

Gene fusion events have been linked to oncogenesis in many cancers. However, gene fusions in meningioma are understudied compared to somatic mutations, chromosomal gains/losses, and epigenetic changes. Fusions involving B-raf proto-oncogene, serine/threonine kinase (BRAF) are subtypes of oncogenic BRAF genetic abnormalities that have been reported in certain cases of brain tumors, such as pilocytic astrocytomas. However, BRAF fusions have not been recognized in meningioma. We present the case of an adult female presenting with episodic partial seizures characterized by déjà vu, confusion, and cognitive changes. Brain imaging revealed a cavernous sinus and sphenoid wing mass and she underwent resection. Histopathology revealed a World Health Organization (WHO) grade 1 meningioma. Genetic profiling with next generation sequencing and microarray analysis revealed an in-frame BRAF::PTPRN2 fusion affecting the BRAF kinase domain as well as chromothripsis of chromosome 7q resulting in multiple segmental gains and losses including amplifications of cyclin dependent kinase 6 (CDK6), tyrosine protein-kinase Met (MET), and smoothened (SMO). Elevated pERK staining in tumor cells provided evidence of activated mitogen-activated protein kinase (MAPK) signaling. This report raises the possibility that gene fusion events may be involved in meningioma pathogenesis and warrant further investigation.


Assuntos
Neoplasias Meníngeas , Meningioma , Proteínas de Fusão Oncogênica , Proteínas Proto-Oncogênicas B-raf , Adulto , Feminino , Humanos , Neoplasias Meníngeas/diagnóstico por imagem , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/cirurgia , Meningioma/diagnóstico por imagem , Meningioma/genética , Meningioma/cirurgia , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Tirosina Fosfatases Classe 8 Semelhantes a Receptores
16.
Aging (Albany NY) ; 15(21): 12068-12084, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37910780

RESUMO

Meningiomas are common intracranial tumors, and the effect of surgical resection is often unsatisfactory. N6-Methyladenosine (m6A)-related regulator expression levels are related to cancer occurrence and development. This study aimed to investigate the roles of m6A RNA methylation regulators in meningiomas, as these are currently unclear. Two m6A methylation-regulated genes (METTL3 and IGF2BP2) were identified as survival-associated linear models for RiskScore through bioinformatics analysis. Univariate and multivariate Cox regression analyses showed that the overall survival of patients with meningioma in the high-risk group was substantially shorter than that in the low-risk group. Weighted gene co-expression network analysis constructed a co-expression network based on the m6A methylation model (RiskScore). Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes analyses identified the biological processes of hub module gene behavior, and Cytoscape constructed an m6A methylation-related gene regulatory network. In vitro experiments verified that the mRNA and protein expression levels of METTL3 and IGF2BP2 were lower in meningioma cells than in normal meningioma cells. Therefore, central regulators of m6A methylation (METTL3 and IGF2BP2) could potentially serve as novel therapeutic targets in meningioma. Subsequently, a novel methylation signature (RiskScore) was developed for prognostic prediction in patients with meningioma.


Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/genética , Metilação , Adenosina , Neoplasias Meníngeas/genética , RNA , Metiltransferases/genética , Proteínas de Ligação a RNA/genética
17.
Nat Med ; 29(12): 3067-3076, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944590

RESUMO

Surgery is the mainstay of treatment for meningioma, the most common primary intracranial tumor, but improvements in meningioma risk stratification are needed and indications for postoperative radiotherapy are controversial. Here we develop a targeted gene expression biomarker that predicts meningioma outcomes and radiotherapy responses. Using a discovery cohort of 173 meningiomas, we developed a 34-gene expression risk score and performed clinical and analytical validation of this biomarker on independent meningiomas from 12 institutions across 3 continents (N = 1,856), including 103 meningiomas from a prospective clinical trial. The gene expression biomarker improved discrimination of outcomes compared with all other systems tested (N = 9) in the clinical validation cohort for local recurrence (5-year area under the curve (AUC) 0.81) and overall survival (5-year AUC 0.80). The increase in AUC compared with the standard of care, World Health Organization 2021 grade, was 0.11 for local recurrence (95% confidence interval 0.07 to 0.17, P < 0.001). The gene expression biomarker identified meningiomas benefiting from postoperative radiotherapy (hazard ratio 0.54, 95% confidence interval 0.37 to 0.78, P = 0.0001) and suggested postoperative management could be refined for 29.8% of patients. In sum, our results identify a targeted gene expression biomarker that improves discrimination of meningioma outcomes, including prediction of postoperative radiotherapy responses.


Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Biomarcadores , Perfilação da Expressão Gênica , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/radioterapia , Neoplasias Meníngeas/patologia , Meningioma/genética , Meningioma/radioterapia , Meningioma/patologia , Recidiva Local de Neoplasia/patologia , Estudos Prospectivos
18.
Acta Neuropathol Commun ; 11(1): 189, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017560

RESUMO

Homozygous CDKN2A/B deletion has been associated with an increased risk of recurrence in meningiomas. However, the evidence is confined to a limited number of studies, and the importance of heterozygous CDKN2A/B deletions remains insufficiently investigated. Hence, the present meta-analysis reconstructs individual patient data (IPD) and reconstructs the probabilities of progression-free survival (PFS) stratified by CDKN2A/B status. IPD of PFS rates were extracted from published Kaplan-Meier plots using the R package IPDfromKM in R studio (RStudio, Boston, MA, USA). Reconstructed Kaplan-Meier Plots of the pooled IPD data were created. One-stage and two-stage meta-analyses were performed. Hazard ratios (HR) were used as effective measures. Of 181 records screened, four articles with 2521 participants were included. The prevalence of homozygous CDKN2A/B deletions in the included studies was 0.049 (95% CI 0.040-0.057), with higher tumor grades associated with a significantly greater proportion of CDKN2A/B deletions. The reconstructed PFS curves for the pooled cohort showed that the median PFS time of patients with a CDKN2A/B wild-type status, heterozygous or homozygous CDKN2A/B deletion was 180.0 (95% CI 145.7-214.3), 26.1 (95% CI 23.3-29.0), and 11.00 (95% CI 8.6-13.3) months, respectively (p < 0.0001). Both hetero- or homozygous CDKN2A/B deletions were significantly associated with shortened time to meningioma progression. One-stage meta-analysis showed that hetero- (HR: 5.5, 95% CI 4.0-7.6, p < 0.00001) and homozygous CDKN2A/B deletions (HR: 8.4, 95% CI 6.4-11.0, p < 0.00001) are significantly associated with shortened time to meningioma progression. Multivariable Cox regression analysis of progression in a subgroup with available covariates (age, sex, WHO grade, and TERT status) and also two-stage meta-analysis confirmed and validated the results of the one-stage analysis that both heterozygous and homozygous CDKN2A/B deletions are of prognostic importance. Further large-scale studies of WHO grade 2 and 3 meningiomas are needed to validate the importance of heterozygous CDKN2A/B deletions with consideration of established factors.


Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/genética , Meningioma/patologia , Prognóstico , Intervalo Livre de Progressão , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patologia , Inibidor p16 de Quinase Dependente de Ciclina/genética
19.
In Vivo ; 37(6): 2473-2479, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37905647

RESUMO

BACKGROUND/AIM: Meningiomas are one of the most common intracranial tumors, accounting for 30% of the tumors of the central nervous system. MicroRNAs (miRNAs) are noncoding RNAs containing approximately 18-22 nucleotides that regulate gene expression by interfering with transcription or inhibiting translation. Recent studies have reported that miRNAs could provide information about the molecular pathogenesis of several types of tumors. This study aimed to examine the expression levels of miRNA-885 and -451 and to determine their potential roles as biomarkers in meningioma. MATERIALS AND METHODS: In total, 29 patients with meningioma (9 males and 20 females) were included in this study. The expression levels of miRNA were determined using real-time polymerase chain reaction. In addition, receiver operating characteristic curve analysis was used to analyze the predictive potential of miRNAs. RESULTS: Our results indicated a significant increase in miRNA-451 expression levels (p=0.003); however, there was no significant change in miRNA-885 expression levels (p=0.139) in patients with meningioma compared with the control group. Moreover, miRNA-885 and miRNA-451 expression levels did not differ significantly based on the histopathological grade of meningioma. CONCLUSION: miRNA-451 may be a novel potential marker for the diagnosis and prognosis, and a target for meningioma treatment.


Assuntos
Neoplasias Meníngeas , Meningioma , MicroRNAs , Masculino , Feminino , Humanos , MicroRNAs/genética , Meningioma/genética , Meningioma/metabolismo , Meningioma/patologia , Prognóstico , Biomarcadores , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/metabolismo , Neoplasias Meníngeas/patologia , Perfilação da Expressão Gênica/métodos
20.
Cells ; 12(20)2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37887327

RESUMO

Meningioma, a primary brain tumor, is commonly encountered and accounts for 39% of overall CNS tumors. Despite significant progress in clinical research, conventional surgical and clinical interventions remain the primary treatment options for meningioma. Several proteomics and transcriptomics studies have identified potential markers and altered biological pathways; however, comprehensive exploration and data integration can help to achieve an in-depth understanding of the altered pathobiology. This study applied integrated meta-analysis strategies to proteomic and transcriptomic datasets comprising 48 tissue samples, identifying around 1832 common genes/proteins to explore the underlying mechanism in high-grade meningioma tumorigenesis. The in silico pathway analysis indicated the roles of extracellular matrix organization (EMO) and integrin binding cascades in regulating the apoptosis, angiogenesis, and proliferation responsible for the pathobiology. Subsequently, the expression of pathway components was validated in an independent cohort of 32 fresh frozen tissue samples using multiple reaction monitoring (MRM), confirming their expression in high-grade meningioma. Furthermore, proteome-level changes in EMO and integrin cell surface interactions were investigated in a high-grade meningioma (IOMM-Lee) cell line by inhibiting integrin-linked kinase (ILK). Inhibition of ILK by administrating Cpd22 demonstrated an anti-proliferative effect, inducing apoptosis and downregulating proteins associated with proliferation and metastasis, which provides mechanistic insight into the disease pathophysiology.


Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/genética , Proteômica , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Neoplasias Meníngeas/genética , Proliferação de Células , Integrinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...